Skip to Main content

Research Institute

Japanese

CAMD (Center for Development of Advanced Medicine for Dementia)

ホーム > Research > Center > Center for Development of Advanced Medicine for Dementia > Department > Neurogenetics

Department of Neurogenetics

Our mission

Our goal is to understand the pathogenesis of Alzheimer's disease through the analyses of the various cellular and animal models of the disease, leading to the development of novel diagnostic, preventive and therapeutic measures.

Neurogenetics

Home

Welcome to the website of the Department of Neurogenetics!

The goals of our reserch are to elucidate molecular mechanisms underlying the pathogenesis of Alzheimer's disease (AD) and to identify novel risk factors and therapeutic targets for AD.

 

Top

Member

September 17, 2021

Member

Department head (Professor)

Koichi M. Iijima, Ph.D.

Associate professor

Michiko Sekiya, Ph.D.

Rsearch specialist

Yasufumi Sakakibara, Ph.D.

Postdoctroal fellow

Yu Hirota, Ph.D.

Kyoko Ibaraki, Ph.D.

Jingwei Shang, Ph.D.

Research technician

Kimi Takei, B.S.

Sachie Chikamatsu, M.S.

Yoko Tsubokawa, M.S.

Risa Nishijima, M.S.

Naoko Muraki, B.S.

Graduate Student

Risa Yamashiro, M.S.

Sachie Chikamatsu, M.S.

Visiting researcher

Takashi Saitoh, Ph.D.

Tetsuya Kimura, Ph.D.

Xiuming Quan, Ph.D.

Corporate reserchers (2)

Former member

- March 2020

Shingo Koinuma, Ph.D.

Shohei Shibamoto, M.S.

Ken Okada, Ph.D.

- March 2021

Nobuyuki Kimura, Ph.D.

Sayuri Asai

Yukako Tsuchiya, M.S

Top

Research

The goals of our research are to elucidate mechanisms underlying the pathogenesis of Alzheimer's disease and develop disease modifying therapies.

  1. Unravel mechanisms underlying pathological accumulation of amyloid-β and tau in brains.
  2. Decipher mechanisms underlying neurodegeneration in Alzheimer’s disease.
  3. Explore mechanisms underlying resistance and resilience to Alzheimer’s disease.
  4. Develop animal models of Alzheimer’s disease for basic and translational research.  

Top

Publication

Koichi M. Iijima

48. Sakakibara, Y., Hirota, Y., Ibaraki, K., Takei, K., Chikamatsu, S., Tsubokawa, Y., Saito, T., Saido, T.C., Sekiya, M., Iijima, K.M. (2021) Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis, doi: 10.3233.

47. Sekiya, M., Iijima, KM. (2021) Phenotypic Analysis of a Transgenic Drosophila Model of Alzheimer’s Amyloid-β Toxicity. STAR Protocols, 2(2), 100501.

46. Oka, M., Suzuki, E., Asada, A., Saito, T., Iijima, KM., Ando, K. (2021) Increasing neuronal glucose uptake attenuates brain aging and promotes lifespan in Drosophila. iScience, Volume 24, Issue 1, 22 January 2021, 101979

45. Wang, M.*, Li, A.*, Sekiya, M.*, Beckmann, ND.*, Quan, X.*, Schrode, N.,  Fernando, MB., Yu, A., Zhu, L., Cao, J., Lyu, L., Horgusluoglu, E., Wang, Q., Guo, L., Wang, YS., Neff, R., Song, WM., Wang E., Shen, Q., Zhou, X., Ming, C., Ho, SM., Vatansever, S., Kaniskan, H.Ü, Jin, J., Zhou, MM., Ando, K., Ho, L., Slesinger, PA., Yue, Z., Zhu, J., Katsel, P., Gandy, S., Ehrlich, ME., Fossati, V., Noggle S., Cai D., Haroutunian, V., Iijima, KM.#, Schadt, E.#, Brennand, KJ.# and Zhang, B.# (2021) Transformative Network Modeling of Multi-Omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease. Neuron, Volume 109, Issue 2, 20 January 2021, Pages 257-272.e14, *First author, #Senior author.

44. Oba, T, Saito, T, Asada, A, Shimizu, S, Iijima, KM, Ando, K. (2020) Microtubule Affinity Regulating Kinase 4 with an Alzheimer disease-related mutation promotes tau accumulation and exacerbates neurodegeneration
J Biol Chem. Dec 11;295(50):17138-17147. doi: 10.1074/jbc.RA120.014420. Epub 2020 Oct 5. PMID: 33020179 

43. Kikuchi, M., Sekiya, M., Hara, N., Miyashita, A., Kuwano, R., Ikeuchi, T., Iijima, K.M., Nakaya, A. (2020) Disruption of a RAC1-centred network is associated with Alzheimer’s disease pathology and causes age-dependent neurodegeneration Hum. Mol. Genet., 2020 Mar 27;29(5):817-833. doi: 10.1093/hmg/ddz320.

42. Saito, T., Oba, T., Shimizu, S., Asada, A., Iijima, K.M. & Ando, K. (2019) Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum. Mol. Genet., 28(18):3062-3071. doi: 10.1093/hmg/ddz120.

41. 飯島浩一 (2019) アルツハイマー病の治療法確立に向けた基礎研究の展望, 日本医事新報・特集・医療の近未来予想図, No.4958 p.18

40. Sakakibara, Y., Sekiya, M., Saito, T., Saido, T.C. & Iijima, K.M. (2019) Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease. BMC Neurosci., 2019 Mar 20;20(1):13. doi: 10.1186/s12868-019-0496-6.

39. Chiku, T., Hayashishita, M., Saito, T., Oka, M., Shinno, K., Ohtake, Y., Shimizu, S., Asada, A., Hisanaga, S., Iijima, K.M., & Ando, K. (2018) S6K/p70S6K1 protects against tau-mediated neurodegeneration by decreasing the level of tau phosphorylated at Ser262 in a Drosophila model of tauopathy. Neurobiol Aging., 2018 Nov;71:255-264. doi: 10.1016/j.neurobiolaging.2018.07.021. Epub 2018 Aug 3.

38. Sakakibara, Y., Sekiya, M., Saito, T., Saido, T.C. & Iijima, K.M. (2018) Cognitive and emotional alterations in App knock-in mouse models of Aβ amyloidosis. BMC Neurosci., 2018 Jul 28;19(1):46. doi: 10.1186/s12868-018-0446-8.

37. 飯島浩一,関谷倫子 (2018) アルツハイマー病の発症機序研究〜TREM2/TYROBPから見えてきたアルツハイマー病発症機序〜 Animus 2018 No.96 p.13-17

36. Sekiya, M.*, Wang, M.*, Fujisaki, N., Sakakibara, Y., Quan, X., Ehrlich, M.E., De Jager, P.L., Bennett, D.A., Schadt, E.E., Gandy, S., Ando, K., Zhang, B., & Iijima, K.M. (2018) Integrated biology approach reveals molecular and pahological interactions among Alzheimer's Aβ42, Tau, TREM2, and TYROBP in Drosophilamodels. Genome Med., 2018 Mar29;10(1):26., *Co-first authors

35. Sakakibara, Y.*, Sekiya, M.*, Fujisaki, N., Quan, X., & Iijima, K.M. (2018) Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila. PLOS Genetics, 14(1): e1007196., *Co-first authors

34. Satoh, A. & Iijima, K.M. (2018) Roles of tau pathology in the locus coeruleus (LC) in age-associated pathophysiology and Alzheimer’s disease pathogenesis. (Review) Brain Research, 2017 Dec 21. pii: S0006-8993(17)30562-0. doi: 10.1016/j.brainres.2017.12.027

33. Sekiya, M., Maruko-Otake, A., Hearn, S., Fujisaki, N., Sakakibara, Y., Suzuki, E., Ando, K. & Iijima, K.M. (2017) EDEM function in ERAD protects against chronic ER proteinopathy and age-related physiological decline in Drosophila. Developmental Cell, 41 (6) 652-664. e5, 19 June 2017          

32. Oka, M., Fujisaki, N.,Maruko-Otake, A., Ohtake, Y., Shimizu, S., Saitoh T., Hisanaga, S., Iijima, K.M. & Ando, K. (2017) Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. J. Biochem., DOI: https://doi.org/10.1093/jb/mvx038

31. 岡未来子, 飯島浩一, 安藤香奈絵 (2017) 神経細胞内のミトコンドリア局在異常と認知症, 実験医学, 認知症: 発症前治療のために解明すべき分子病態は何か?, Vol. 35, No.12, p182-p185

30. Ando, K., Oka, M., Ohtake, M., Hayashishita, M., Shimizu,S., Hisanaga, S. & Iijima, K.M. (2016) Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated. Biochem Biophys Res Commun, 478(2):929-34. doi:10.1016/j.bbrc.2016.08.053. Epub 2016 Aug 9

29. 関谷倫子,飯島浩一 (2016) 統合生物学的手法によるアルツハイマー型神経細胞死の機序解明とその抑止法, Dementia Japan, 30巻, 2号, 246-256

28. Ando, K., Maruko-Otake, A., Otake, Y., Sekiya, M. & Iijima, K.M. (2016) Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced tau toxicity. PLOS Genetics, 12(3): e1005917

27. 関谷倫子, 飯島浩一 (2016) システム生物学を用いてアルツハイマー病を遺伝子ネットワークから読み解く(総説), ファルマシア, Vol. 52 No. 2, p121-126

26. Ando, K., Suzuki E. Hearn, A., Sekiya, M., Maruko-Otake, A. & Iijima, K.M. (2015) Electron microscopy of the brains of Drosophila models of Alzheimer's disease, Neuromethods, Transmission Electron Microscopy Methods for Understanding the Brain, Springer, DOI 10.1007/7657_2015_75

25. Mendoza, J., Sekiya, M., Taniguchi, T., Iijima, M.K., Wang, R., and Ando, K. (2013) Global Analysis of Phosphorylation of Tau by the Checkpoint Kinases Chk1 and Chk2 in vitro, Journal of Proteome Research, 12(6):2654-65

24. Iijima-Ando, K., Sekiya, M., Maruko-Otake, A., Ohtake, Y., Suzuki, E., Lu, B., and Iijima, K.M. (2012) Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1, PLOS Genetics, 8(8): e1002918

23. Iijima, K. and Iijima-Ando, K. (2011) Transgenic Drosophila models of Alzheimer's amyloid-beta 42 toxicity, Handbook of Animal Models in Alzheimer's Disease: G. Casadesus (Ed.), IOS Press., 89-106

22. Iijima, K., Gatt, A. and Iijima-Ando, K. (2010) Tau Ser262 phosphorylation is critical for Abeta42-induced tau toxicity in a transgenic Drosophila model of Alzheimer's disease, Hum. Mol. Genet., 19:2947-57. Epub 2010 May 12

21. Iijima-Ando, K., Zhao, L., Gatt, A., Shenton, C., and Iijima, K. (2010) A DNA damage-activated checkpoint kinase phosphorylates tau and enhances tau-induced neurodegeneration, Hum. Mol. Genet., 19: 1930-1938

20. Iijima, K., Zhao, L., Shenton, C., and Iijima-Ando, K. (2009) Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila, PLOS ONE, 4(12): e8498

19. Iijima-Ando, K. and Iijima, K. (2009) Transgenic Drosophila models of Alzheimer's disease and tauopathies, (review article), Brain Struct. Funct., 214(2-3):245-62, Epub 2009 Dec 5

18. Iijima-Ando, K., Hearn, S.A., Shenton, C., Gatt, A., Zhao, L. and Iijima, K. (2009) Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer's disease, PLOS ONE, 4(12): e8310 

17. Lee, K-S., Iijima-Ando, K., Iijima, K., Lee, W-J., Lee, J.H., Yu, K., and Lee, D-S. (2009) JNK/FOXO-mediated neuronal expression of fly homologue of Peroxiredoxin II reduces oxidative stress and extends lifespan in Drosophila, J. Biol. Chem., 284, 29454-61

16. Iijima, K., Iijima-Ando, K., and Zhong, Y. (2009) Drosophila model of Alzheimer's amyloidosis, Chapter 14, Handbook of Behavior Genetics, Springer

15. Chiang, H., Iijima, K., Hakker, I., and Zhong, Y. (2009) Distinctive roles of different beta-amyloid 42 aggregates in modulation of synaptic functions. FASEB J, 23(6):1969-77

14. Iijima, K., and Iijima-Ando, K. (2008) Drosophila models of Alzheimer amyloidosis; the challenge of dissecting the complex mechanisms of toxicity of amyloid-beta 42. (Review article) Journal of Alzheimer Disease, 15(4):523-40

13. Iijima-Ando, K., Hearn, S.A., Granger, L., Shenton, C., Gatt, A., Chiang, H.C., Hakker, I., Zhong, Y., and Iijima, K. (2008). Overexpression of Neprilysin Reduces Alzheimer Amyloid beta-42 (Abeta42)-induced Neuron Loss and Intraneuronal Abeta42 Deposits but Causes a Reduction in cAMP-responsive Element-binding Protein-mediated Transcription, Age-dependent Axon Pathology, and Premature Death in Drosophila.  J. Biol. Chem. 283, 19066-19076

12. Iijima, K., Chiang, H. C., Hearn, S. A., Hakker, I., Gatt, A., Shenton, C., Granger, L., Leung, A., Iijima-Ando, K., and Zhong, Y. (2008) Abeta42 mutants with different aggregation profiles induce distinct pathologies in Drosophila. PLOS ONE 3, e1703

11. Sano, Y., Nakaya, T., Pedrini, S., Furukori, K., Iijima-Ando, K., Iijima, K., Mathews, P.M., Itohara, S., Gandy, S, and Suzuki, T. (2006) Physiological mouse brain amyloid-beta levels are not related to the phosphorylation state of threonine-668 of Alzheimer APP. PLOS ONE, 1, e51

10. Iijima-Ando, K., Wu, P., Drier, A., Iijima, K. & Yin, J.C.P. (2005) CREB and HSP70 additively suppress polyglutamine-induced toxicity in Drosophila. Proc. Natl. Acad. Sci. 102, 10261-6

9. Asaumi, M., Iijima, K., Sumioka, A.,Iijima-Ando, K., Kirino, Y., Nakaya, T. & Suzuki, T. (2005) Interaction of N-terminal acetyltransferase with the cytoplasmic domain of beta-amyloid precursor protein and its effect on Abeta secretion. J. Biochem. (Tokyo). 137(2):147-55

8. Iijima, K., Liu, H-P., Chiang, A-S., Hearn, S. A., Konsolaki, M. & Zhong, Y. (2004) Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: A potential model for Alzheimer disease. Proc. Natl. Acad. Sci. 101, 6623-6628

7. Taru, H., Iijima, K., Hase, M., Kirino, Y., Yagi, Y., & Suzuki, T. (2002) Interaction of Alzheimer beta-Amyloid Precursor Family Proteins with Scaffold Proteins of the JNK Signaling Cascade. J. Biol. Chem. 277, 20070-78

6. Ando, K., Iijima, K., Elliott, J.L., Kirino, Y., & Suzuki, T. (2001) Phosphorylation-dependent regulation on the interaction of amyloid precursor protein with Fe65 and the production of beta-amyloid. J. Biol. Chem. 276, 40353-61

5. Iijima, K., Ando, K., Takeda, S., Satoh, Y., Seki, T., Itohara, S., Greengard, P., Narin, A.C., Kirino, Y. & Suzuki, T. (2000). Neuron-specific phosphorylation of Alzheimer amyloid precursor protein by Cdk5. J. Neurochem. 75, 1085-91

4. Suzuki, T., Ando, K., Iijima, K., Oguchi, S., Takeda, S. (1999). Phosphorylation of Amyloid Precursor Protein (APP) Family Proteins. Alzheimer's Disease Methods and Protocols, Methods in Molecular Medicine, Vol 32, 271-282

3. Ando, K., Oishi, M., Takeda, S., Iijima, K., Isohara, T., Narin, A.C., Kirino, Y., Greengard, P., & Suzuki, T. (1999). Role of phosphorylation of Alzheimer amyloid precursor protein during neuronal differentiation. J Neurosci. 19, 4421-7

2. Watanabe,T., Sukegawa, J., Sukegawa, I., Tomita, S., Iijima, K., Oguchi, S., Suzuki, T., Nairn, A.C., & Greengard, P. (1999). A 127-kDa protein (UV-DDB) binds to the cytoplasmic domain of the Alzheimer amyloid precursor protein. J. Neurochem. 72, 549-56

1. Iijima, K, Lee, D.S., Okutsu, J., Tomita, S., Hirashima, N., Kirino, Y., & Suzuki, T. (1998) cDNA isolation of Alzheimer amyloid precursor protein from cholinergic nerve terminals of the electric organ of the electric ray. Biochem. J. 330, 29-33

Michiko Sekiya

34. Sakakibara, Y., Hirota, Y., Ibaraki, K., Takei, K., Chikamatsu, S., Tsubokawa, Y., Saito, T., Saido, T.C., Sekiya, M., Iijima, K.M. (2021) Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis, doi: 10.3233.

33. Sekiya, M., Iijima, KM. (2021) Phenotypic Analysis of a Transgenic Drosophila Model of Alzheimer’s Amyloid-β Toxicity. STAR Protocols, 2(2), 100501.

32. Wang, M.*, Li, A.*, Sekiya, M.*, Beckmann, ND.*, Quan, X.*, Schrode, N.,  Fernando, MB., Yu, A., Zhu, L., Cao, J., Lyu, L., Horgusluoglu, E., Wang, Q., Guo, L., Wang, YS., Neff, R., Song, WM., Wang E., Shen, Q., Zhou, X., Ming, C., Ho, SM., Vatansever, S., Kaniskan, H.Ü, Jin, J., Zhou, MM., Ando, K., Ho, L., Slesinger, PA., Yue, Z., Zhu, J., Katsel, P., Gandy, S., Ehrlich, ME., Fossati, V., Noggle S., Cai D., Haroutunian, V., Iijima, KM.#, Schadt, E.#, Brennand, KJ.# and Zhang, B.# (2021) Transformative Network Modeling of Multi-Omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease. Neuron, Volume 109, Issue 2, 20 January 2021, Pages 257-272.e14, *First author, #Senior author.

31. Kikuchi, M., Sekiya, M., Hara, N., Miyashita, A., Kuwano, R., Ikeuchi, T., Iijima, K.M., Nakaya, A. (2020)  Disruption of a RAC1-centred network is associated with Alzheimer’s disease pathology and causes age-dependent neurodegeneration Hum. Mol. Genet., 2020 Mar 27;29(5):817-833. doi: 10.1093/hmg/ddz320.

30. Sakakibara, Y., Sekiya, M., Saito, T., Saido, T.C. & Iijima, K.M. (2019) Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease. BMC Neurosci., 2019 Mar 20;20(1):13. doi: 10.1186/s12868-019-0496-6.

29. Sakakibara, Y., Sekiya, M., Saito, T., Saido, T.C. & Iijima, K.M. (2018) Cognitive and emotional alterations in App knock-in mouse models of Aβ amyloidosis. BMC Neurosci., 2018 Jul 28;19(1):46. doi: 10.1186/s12868-018-0446-8.

28. 飯島浩一,関谷倫子 (2018) アルツハイマー病の発症機序研究〜TREM2/TYROBPから見えてきたアルツハイマー病発症機序〜 Animus 2018 No.96 p.13-17

27. Sekiya, M.*, Wang, M.*, Fujisaki, N., Sakakibara, Y., Quan, X., Ehrlich, M.E., De Jager, P.L., Bennett, D.A., Schadt, E.E., Gandy, S., Ando, K., Zhang, B., & Iijima, K.M. (2018) Integrated biology approach reveals molecular and pahological interactions among Alzheimer's Aβ42, Tau, TREM2, and TYROBP in Drosophilamodels. Genome Med., 2018 Mar29;10(1):26., *Co-first authors

26. Sakakibara, Y.*, Sekiya, M.*, Fujisaki, N., Quan, X., & Iijima, K.M. (2018) Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila. PLOS Genetics, 14(1): e1007196., *Co-first authors

25. Sekiya, M., Maruko-Otake, A., Hearn, S., Fujisaki, N., Sakakibara, Y., Suzuki, E., Ando, K. & Iijima, K.M. (2017) EDEM function in ERAD protects against chronic ER proteinopathy and age-related physiological decline in Drosophila. Developmental Cell, 41 (6) 652-664. e5, 19 June 2017      

24. 関谷倫子,飯島浩一 (2016) 統合生物学的手法によるアルツハイマー型神経細胞死の機序解明とその抑止法, Dementia Japan, 30巻, 2号, 246-256

23. Ando, K., Maruko-Otake, A., Otake, Y., Sekiya, M. & Iijima, K.M. (2016) Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced tau toxicity. PLOS Genetics, 12(3): e1005917

22. 関谷倫子, 飯島浩一 (2016) システム生物学を用いてアルツハイマー病を遺伝子ネットワークから読み解く(総説), ファルマシア, Vol. 52 No. 2, p121-126

21. Ando, K., Suzuki E. Hearn, A., Sekiya, M., Maruko-Otake, A. & Iijima, K.M. (2015) Electron microscopy of the brains of Drosophila models of Alzheimer's disease, Neuromethods, Transmission Electron Microscopy Methods for Understanding the Brain, Springer, DOI 10.1007/7657_2015_75

20. Mendoza, J., Sekiya, M., Taniguchi, T., Iijima, M.K., Wang, R., and Ando, K. (2013) Global Analysis of Phosphorylation of Tau by the Checkpoint Kinases Chk1 and Chk2 in vitro, Journal of Proteome Research, 12(6):2654-65

19. Ichiyanagi, T., Kashiwada, Y., Shida, Y., Sekiya, M., Hatano, Y., Takaishi, Y., and Ikeshiro, Y. (2013). Structural elucidation and biological fate of two glucuronyl metabolites of pelargonidin 3-O-beta-D-glucopyranoside in rats. Journal of agricultural and food chemistry 61, 569-578.

18. Iijima-Ando, K., Sekiya, M., Maruko-Otake, A., Ohtake, Y., Suzuki, E., Lu, B., and Iijima, K.M. (2012) Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1, PLOS Genetics, 8(8): e1002918

17. Xiong, J., Taniguchi, M., Kashiwada, Y., Sekiya, M., Yamagishi, T., and Takaishi, Y. (2010). Papyriferic acid derivatives as reversal agents of multidrug resistance in cancer cells. Bioorganic & medicinal chemistry 18, 2964-2975.

16. Tanaka, N., Kashiwada, Y., Nakano, T., Shibata, H., Higuchi, T., Sekiya, M., Ikeshiro, Y., and Takaishi, Y. (2009). Chromone and chromanone glucosides from Hypericum sikokumontanum and their anti-Helicobacter pylori activities. Phytochemistry 70, 141-146.

15. Tanaka, N., Kashiwada, Y., Kim, S.Y., Sekiya, M., Ikeshiro, Y., and Takaishi, Y. (2009). Xanthones from Hypericum chinense and their cytotoxicity evaluation. Phytochemistry 70, 1456-1461.

14. Tanaka, N., Kashiwada, Y., Kim, S.Y., Hashida, W., Sekiya, M., Ikeshiro, Y., and Takaishi, Y. (2009). Acylphloroglucinol, biyouyanagiol, biyouyanagin B, and related spiro-lactones from Hypericum chinense. Journal of natural products 72, 1447-1452.

13. Sekiya, M., Ichiyanagi, T., Ikeshiro, Y., and Yokozawa, T. (2009). The Chinese prescription Wen-Pi-Tang extract delays disease onset in amyotrophic lateral sclerosis model mice while attenuating the activation of glial cells in the spinal cord. Biological & pharmaceutical bulletin 32, 382-388.

12. Tanaka, N., Kashiwada, Y., Sekiya, M., Ikeshiro, Y., and Takaishi, Y. (2008). Takaneones A–C, prenylated butylphloroglucinol derivatives from Hypericum sikokumontanum. Tetrahedron Letters 49, 2799-2803.

11. Rhyu, D.Y., Kang, K.S., Sekiya, M., Tanaka, T., Park, J.C., and Yokozawa, T. (2008). Active compounds isolated from traditional Chinese prescription Wen-Pi-Tang protecting against peroxynitrite-induced LLC-PK1 cell damage. The American journal of Chinese medicine 36, 761-770.

10. Ichiyanagi, T., Shida, Y., Rahman, M.M., Sekiya, M., Hatano, Y., Matsumoto, H., Hirayama, M., Konishi, T., and Ikeshiro, Y. (2008). Effect on both aglycone and sugar moiety towards Phase II metabolism of anthocyanins. Food chemistry 110, 493-500.

9. Hashida, W., Tanaka, N., Kashiwada, Y., Sekiya, M., Ikeshiro, Y., and Takaishi, Y. (2008). Tomoeones A-H, cytotoxic phloroglucinol derivatives from Hypericum ascyron. Phytochemistry 69, 2225-2230.

8. Suzuki, K., Okasaka, M., Kashiwada, Y., Takaishi, Y., Honda, G., Ito, M., Takeda, Y., Kodzhimatov, O.K., Ashurmetov, O., Sekiya, M., et al. (2007). Sesquiterpene lactones from the roots of Ferula varia and their cytotoxic activity. Journal of natural products 70, 1915-1918.

7. Sekiya, M., Kashiwada, Y., Nabekura, T., Kitagawa, S., Yamagishi, T., Yokozawa, T., Ichiyanagi, T., Ikeshiro, Y., and Takaishi, Y. (2007). Effect of triterpenoids isolated from the floral spikes of Betula platyphylla var. japonicaon P-glycoprotein function. Planta medica 73, 1558-1562.

6. Rhyu, D.Y., Kang, K.S., Sekiya, M., and Yokozawa, T. (2007). Antioxidant effect of Wen-Pi-Tang and its component crude drugs on oxidative stress. The American journal of Chinese medicine 35, 127-137.

5. Kashiwada, Y., Sekiya, M., Yamazaki, K., Ikeshiro, Y., Fujioka, T., Yamagishi, T., Kitagawa, S., and Takaishi, Y. (2007). Triterpenoids from the floral spikes of Betula platyphylla var. japonica and their reversing activity against multidrug-resistant cancer cells. Journal of natural products 70, 623-627.

4. Yokozawa, T., Sekiya, M., Cho, E.J., Kurokawa, M., and Shiraki, K. (2004). Effect of Wen-Pi-Tang extract on lung damage by influenza virus infection. Phytomedicine : international journal of phytotherapy and phytopharmacology 11, 625-632.

3. Kashiwada, Y., Sekiya, M., Ikeshiro, Y., Fujioka, T., Kilgore, N.R., Wild, C.T., Allaway, G.P., and Lee, K.H. (2004). 3-O-Glutaryl-dihydrobetulin and related monoacyl derivatives as potent anti-HIV agents. Bioorganic & medicinal chemistry letters 14, 5851-5853.

2. Chen, C., Yokozawa, T., Sekiya, M., Hattori, M., and Tanaka, T. (2001). Protective effect of Sanguisorbae Radix against peroxynitrite-mediated renal injury. Journal of Traditional Medicines 18, 1-7.

1. Yokozawa, T., Sekiya, M., Rhyu, D., Hattori, M., and Chung, H. (2000). Radical-scavenging activity of Wen-Pi-Tang and its component crude drugs: with special reference to the effects on nitric oxide, superoxide and peroxynitrite. Journal of Traditional Medicines 17, 41-47.
 

先頭へ戻る

Education

Graduate student

Graduate students can enter our lab via Nagoya city University, Guraduate School of Pharmaceutical Science program (Experimental Gerontology)このリンクは別ウィンドウで開きます.

Postdoctoral Fellow

If you are interested in working on our projects as a postdoctoral fellow, please contact us.

Contact

Head of Department of Neurogenetics

Koichi M. Iijima

Tel: 0562-46-2311 (ext. 6401/7505/6408)

E-mail: iijimakm (at) ncgg.go.jp

Access to NCGG

7-430, Morioka-machi, Obu City, Aichi 474-8511, Japan

About 30 minutes by car from the Chubu International Airport (Centrair)

Access to NCGG (Link)

Top

Photos

〜In our Lab〜

NeuroG1 NeuroG2 NeuroG3

NeuroG4 NeuroG4 NeuroG6

NeuroG7 NeuroG8 NeuroG9

NeuroG10 NeuroG11 NeuroG12

NeuroG13 NeuroG14

〜April 2019, Department of Alzheimer's Disease〜

NeuroG_13

Top